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Abstract. Machine learning for complex multi-objective problems (MOP)
can substantially speedup the discovery of solutions belonging to Pareto
landscapes and improve Pareto front accuracy. Studying convergence
speedup of multi-objective search on well-known benchmarks is an im-
portant step in the development of algorithms to optimize complex prob-
lems such as High Energy Physics particle transport simulations. In this
paper we will describe how we perform this optimization via a tuning
based on genetic algorithms and machine learning for MOP. One of the
approaches described is based on the introduction of a specific multi-
variate analysis operator that can be used in case of expensive fitness
function evaluations, in order to speed-up the convergence of the ”black-
box” optimization problem.

1 Introduction

Modern fundamental science requires the development of complex experimental
machines like the LHC in High Energy Physics or land and space based x-ray
and gamma-ray telescopes in High Energy Astrophysics. Other examples can be
found in the fields of protein synthesis, gene regulation research on genome evo-
lution. All these activities generate large data sets and require the development
of new approaches and methods for their efficient analysis on modern computer
platforms.

In the point of the work on analyzing and optimizing the performance of
the GeantV code [1], which is the prototype of the next-generation particle
transport simulation software intended to succeed to Geant4 [2], which is the
current golden standard in high energy physics (HEP) and beyond. Geant4 is
a toolkit for simulation of the passage of particles through different kinds of
matter, with application including high energy and nuclear physics, accelerator
physics, medicine and space science. It is widely used in HEP experiments at
the Large Hadron Collider (LHC) located at CERN (Geneva, Switzerland).

One of the objectives of the GeantV project is to achieve good performance
on a wide range of modern computing architectures with good scalability for
complex computations. This is important since Geant4 is the single program



consuming the largest share (50%) of the CPU cycles used for HEP. This code
was developed in the 90s and it is now not well suited to take advantage from
the latest CPU and accelerator architectures.

The GeantV project started in 2013, following an R&D phase focused on
optimal exploitation of instruction level parallelism for particle transport simu-
lation both on CPU and on accelerators such as GPUs and Intel Xeon Phi R©.
Emphasis has been put on the optimization of cache usage by careful manage-
ment of data locality [3]. GeantV is getting significant benefits via a specially
developed computational solid geometry (CSG) modeler, which provides a set of
optimized shape primitives and highly parallel geometry navigator. This provides
GeantV with the necessary ray-tracing functionality for the efficient propagation
of particles through the target geometry [4].

The GeantV project is recasting the simulation algorithms to get maximum
benefit from SIMD/MIMD architectures on highly massive parallel systems [5].
This involves finding the optimal balance of several factors influencing compu-
tational performance (floating-point performance, off-chip memory bandwidth,
usage of cache and memory hierarchy and etc.). As a consequence, a large num-
ber of parameters have to be optimized. This optimization task can be treated
as a black-box problem, which requires searching the optimum set of parameters
using only point-wise function evaluations.

In our optimization work, we consider particle transport simulation to be a
complex heuristic parametric model with costly evaluations and unpredictable
behavior of fitness landscape, that we intend to optimize using stochastic search
algorithms. The objective of this work is to observe whether, by using unsuper-
vised machine learning, we can accelerate the process of finding a Pareto front
describing dominance relations between fitness functions.

Results described in this article is part of the research on the ”black-box”
optimization of GeantV as a multi-objective problem for performance measure-
ments. Combining together genetic algorithm and machine learning approach
we will try to discover special behaviors and fixed points of evolutionary sys-
tems, trying to accelerate convergence rate of algorithm for ”black-box” opti-
mization. Before going to optimize GeantV simulations, we will try to prototype
algorithm’s performance on a set of numerical DTLZ benchmarks [6] in order
to accelerate their convergence to the true Pareto front via the integration of
multi-objective search/optimisation (MOO) algorithms and unsupervised ma-
chine learning (PCA).

2 Genetic algorithms

Genetic algorithm is one of the widely used evolutionary algorithms for studies of
various optimization problems. Theory of genetic algorithms (GA) was a subject
of research for the last decades. Generally accepted model for studying GA is
a simple model of genetic algorithm (SGA) [7] as a prototype of evolutionary
system. This model is describing genetic algorithm (GA) as a dynamical system
with accurate mathematical definitions and well studied in a literature.



In this model for description of GA a Markov chain is used, where states are
populations and transition are operated by sets of genetic operators: selection,
crossover and mutation [8]. Mutation ensures that the Markov chain is connected:
therefore there is an unique equilibrium distribution over populations.

In this scenario, the probability to produce a particular population in one
generation depends only on the previous generation external influencing factors.
This randomized process is described by a Markov chain, characterized by a
transition matrix Θq,p from the population p to the population q.

Dynamical systems describe the evolution of individuals in the finite space of
possible populations of fixed size m, where m is number of measurements during
the experiment. While rethinking the genetic algorithms as a discrete dynamical
system, many interesting mathematical objects like fixed points could be found.
These objects are apparently not only generic for simple genetic algorithms, but
also general for optimization problems. Let’s briefly recall the results presented
in [7] and establish the possible links with the task of optimizing our parameters.

We have a population of N different types of individuals in search sample
space Ω. Each element of Ω can be thought of as a ”unique individual” with a
given fitness value defined by the cost function.

A population consists of m-subsets (m � N) each of which contains vαi of
the αi-type individual where i = 1, ...,m and defined by vector

b = (bα1
, bα2

, ..., bαm)t

where αi ∈ Ω. The size of the population is m̄ =
∑m
i=1 bαi .

We can redefine the population vector in the following form

p = (p1, p2, ..., pN )t

where pα (pαi = bα1
/m̄) is the probability of occurrence α-th individual in the

population vector b.
In this representation the repeated application of the genetic algorithm gives

a sequence of vectors p ∈ Λ where

Λ = {(p1, p2, ..., pN )t ∈ RN | 0 ≤ pα ≤ 1,
N∑
α=1

pα = 1}.

Λ is a set of admissible states for the populations. We can consider Λ as a
(N − 1)-dimensional simplex (a hyper-tetrahedron).

Let Gα(p) is a certain probability of producing individual α in the next
generation if the previous population was p and define map G : Λ→ Λ, where
G(p) =

∏
α∈Ω Gα(p), and G(p) ∈ Λ could be considered as heuristic function.

G(p) is GA procedure on p ∈ Λ and the map G is actually the composition of
three different maps: selection, mutation and crossover.

Let define genetic selection operator F̂ : Λ→ Λ, where F(p) =
∏
α∈Ω Fα(p)

and the α-th component, Fα(p), represents the probability of the appearance of
an individual of type α if the selection is applied to p ∈ Λ. A selection operator
chooses individuals from the current population using the cost function vector,



f = {fα} ∈ RN , where fα = f(α), α ∈ Ω. This generic type of selection collects
elements with probability proportional to their fitness. This corresponds to a
heuristic function

F(p) =
diag (f) · p
f t · p

,

where p ∈ Λ is the population vector, and diag (f) is the matrix with entries
from f along the diagonal and zeros elsewhere.

The mutation operator Û : Λ → Λ is an N × N real valued matrix with
(α, β)-th entry uα,β > 0 for all α, β, and uα,β represents the probability that

individual β ∈ Ω mutates into α ∈ Ω. Then (Û · p)α is the appearance of an
individual of type α after applying a mutation to the population p.

Lets define the crossover operator Ĉ : Λ→ Λ,

C(p) = (pt · Ĉ1 · p, ...,pt · ĈN · p)

for p ∈ Λ, where Ĉ1, ..., ĈN is a sequence of symmetric non-negative N × N
real-valued matrices. Here Ĉα(p) represents the probability that an individual
α is generated by applying the crossover to population p.

Combining the selection, mutation and crossover maps we obtain the com-
plete operator Ĝ for the genetic algorithm (GA map)

Ĝ : Λ→ Λ, Ĝ(p) = Ĉ ◦ Û ◦ F(p).

If we know the heuristic function G, we can write the transition matrix which
is stochastic and based on the probability of transforming the population p into
the population q:

Θq,p = m̄!
∏
α∈Ω

(Gα(p))
m̄qα

(m̄qα)!
(1)

where Gα(p) is probability of producing individual α in the next generation and
M̄qα is the number of copies of individuals α in the population q, m̄ is the size
of the population.

As a brief review, the convergence properties of the simple genetic algorithm
evolution schema was properly explored in the work [9]. While [10] showed that
the convergence rate of the genetic algorithm is determined by the second largest
eigenvalue of the transition matrix (1). The details of the proof was performed for
diagonalizable transition matrices and transferred to matrices in Jordan normal
form.

Another remarkable feature of the SGA is the presence of a rich structure of
fixed and metastable points (for a detailed discussion see [8]).

Describing GA model through Markov chain representation we try to dis-
cover ”hotspots” and find algorithmic or data patterns that could be used for
improvement of the GA.

For the optimization of the GeantV simulation, we identify a set of optimiza-
tion parameters important for the performance of particle transport simulations
(e.g. the size of vector of particles to be transported or other significant design



features) and build the data matrix Xα,i = {(xα)i} = {xα} which contains
the values of these parameters. In this matrix index i enumerates the tuning
parameters (i = 1, ..., n) and index α enumerates the number of measurements
of the parameters (α = 1, ...,M for M measurements), while in terms of GA
index α enumerates M individuals and the population vector is constituted by
(x1,x2, ...,xM ).

Recall the data and probabilistic sample representation. In the first case we
can associate the vector based on the measurements of the i-th parameter x ′i =
{(x ′i )α} = {(x ′i )1, (x

′
i )2, ..., (x

′
i )M}, where the component (x ′i )α corresponds to

the value of the i-th parameter in the α-th measurement with the population
vector (x ′1,x

′
2, ...,x

′
n).

In the second case Pi(x) be the probability distribution function of the mea-
surements of the i-th parameter, with normalization∫ ∞

−∞
dxPi(x) = 1.

Using the previous strategy we associate the population vector

(p1,p2, ...,pn) with (x ′1,x
′
2, ...,x

′
n)

where
pi = {(pi)1, (pi)2, ..., (pi)M},

and the component (pi)α is the probability to measure of the i-th parameter
value (x

′
i )α in the α-th measurement.

One of the challenges of a Markov chain is to determine the evolution of
the components along an appropriate direction for faster convergence to equilib-
rium. Using Principal Component Analysis (PCA) allows to check the genetic
algorithm parameter sensitivity and the possible correlation between parame-
ters. For this we introduce a operator that will be based on PCA and inverse
PCA noise reduction operation for a genetic algorithm’s optimisation of set of
parameters.

We considered a possibility to improve the convergence rate by adding to a
standard set of GA operator’s (selection, mutation, crossing), a new operator P̂
performing uncentered PCA on the GA populations. We will analyze the result
of the implementation of the operator on the uncentered data matrix on standard
GA performance benchmarks. From the experimental output we see that as in
the SGA case [10], the convergence rate of genetic algorithm depends on the
eigenvalues following the highest one, and for this reason the proposed operator
P̂ was applied on them.

3 Pre-processing and post-processing of data: centered
and uncentered PCA and noise cleanup procedure

Usually PCA is used to analyze the covariance matrix in order to reduce a com-
plex data set (in our case performance measurements) to a lower dimensional



set. In this case PCA is traditionally applied to the centered data matrix. In
this subsection we present a way that sort of PCA could be implemented on an
uncentered data matrix. This is particularly convenient in the case of transfor-
mations of constrained data measurements using genetic algorithms, which are
in our case highly constrained and multi-scaled performance parameters. As a
basis of ideas about the connection between the centered and uncentered data
matrix was used ideas from [11,12].

As a data matrix we have a set of performance parameters, while objective
functions are represented in a set of the cost functions evaluating performance
efficiency of GeantV simulations.

1) PCA for the centered data matrix. The elements of the data matrix X̂
of size M × n are described through M -samples of data from an n-dimensional
space. In our case M is the number of individuals in the generation and n is the
size of the individual (n is the dimension of vector of genes x = {xi}, 1 ≤ i ≤ n).

Let xα = {(xα)i}(1 ≤ α ≤M, 1 ≤ i ≤ n) is α-th individual of the population
and

X̂(u) = {X(u)
α,i } = {(xα)i}, (2)

be a uncentered data matrix, size M ×n. Let us define the centered data matrix
X̂(c):

X̂(c) = {X(c)
α,i} = {X(u)

α,i − µi}, (3)

where µi is mean over M -individuals of i-th component of the gene:

µi =
1

M

M∑
α=1

X
(u)
α,i , 1 ≤ i ≤ n, µ = {µi}. (4)

The centered data matrix defines the covariance matrix Σ̂

Σ̂ =
1

M
X̂(c) t · X̂(c) = {Σi,j} =

1

M
X

(c) t
i,α X

(c)
α,j (5)

with the matrix multiplication repeated induces imply summation. Similarly for
the uncentered data matrix we obtain the matrix of non-central second moments,

T̂ =
1

M
X̂(u) t · X̂(u) = {Ti,j} =

1

M
X

(u) t
i,α X

(u)
α,j (6)

In standard PCA terms lets define an orthonormal vector u1 (ui,1, i = 1, ..., n)

for which the projection x
(c)
u1,α of the vector x

(c)
α on u1 has the largest variance

σ2
u1:

x
(c)
u1,α = x(c) t

α · u1 =

n∑
i=1

X
(c)
α,iui,1, u t1 · u1 = 1,

and

σ2
u1 =

1

M

M∑
α=1

[
n∑
i=1

X
(c)
α,iui,1

]2



Then the first principal component (PC) v
(c)
1 is the linear combination with

the largest variance: v
(c)
α,1 = x

(c) t
α ·u1 = X

(c)
α,iui,1, where the n-dimensional vector

u1 = (u1,1, ..., un,1)T solves

u1 = arg max
u

Var(x(c) t
α · u), uT · u = 1.

The second principal component is the linear combination with the second largest
variance and orthogonal to the first principal component, and so on.

To calculate PC it is convenient to consider the variational problem. For

v(c) = {v(c)
α } = {X(c)

α,iui} we have

Var(v (c) ) =
1

M
u t · X̂(c) t · X̂(c) · u = u t · Σ̂ · u (7)

and with the Lagrangian

L = u t · Σ̂ · u+ λ(u tu− 1).

The stationary condition is

∂L

∂u
= 2Σ̂ · u− 2λu = 0, Σ̂ · u = λu.

This matrix equation has n solutions

Σ̂ · uj = λ
(c)
j uj , 1 ≤ j ≤ n,

where uj are eigenvectors of Σ̂ with the eigenvalue λ
(c)
j and uj satisfy the or-

thonormality condition

u ti · uj = δi,j , 1 ≤ i, j ≤ n, (8)

and
u tj · Σ̂ · uj = λ

(c)
j . (9)

Then the direction with maximum variance is the eigenvector with the largest
eigenvalue. This procedure can be iterated to get the second largest variance
projection (orthogonal to the first one), and so on.

From (7) we get:
a) for the variance of the i-th centered principal component

Var(v
(c)
i ) = u ti · Σ̂ · ui = λ

(c)
i (10)

b) for the covariance of the i-th and j-th centered principal components
(i 6= j)

Cov(v
(c)
i ,v

(c)
j ) = u ti · Σ̂ · uj = 0. (11)

Let define Ui,j = uj = (ui)j , from (8) this matrix satisfies the orthonormality
condition

U t
i,i′Ui′,j = δi,j . (12)



Then in matrix form we have

Û t · Σ̂ · Û = Λ̂(c), Λ
(c)
i,j = λ

(c)
i δi,j , (13)

Let define V
(c)
α,j = {v (c)

j } = {(v (c)
α )j}, where v

(c)
j – j-th centered principal com-

ponent. Then

V
(c)
α,j = X

(c)
α,iUi,j , 1 ≤ α ≤M, (14)

and the first principal component v
(c)
1

v
(c)
α,1 = V

(c)
α,1 = X

(c)
α,iUi,1 = x(α) t

c · u1

if λ
(c)
1 is the largest eigenvalue. From (12), (13) we have

V
(c) t
i,α V

(c)
α,j = MΛ

(c)
i,j = Mλ

(c)
i δi,j . (15)

It is convenient to define the new matrix V̄α,j

V
(c)
α,j =

√
MV̄

(c)
α,i Λ

(c) 1/2
i,j , (16)

where

Λ
(c) 1/2
i,j =

[
λ

(c)
i

] 1
2

δi,j ,

Then from (15) and (16) we obtain:

V̄
(c) t
i,α, V̄

(c)
α,j = δi,j ,

Using (16), (14) and (13) we have

V̄
(c) t
i,α X

(c)
α,kX

(c) t
k,β V̄

(c)
β,j = Λ

(c)
i,j = λ

(c)
i δi,j ,

then V̄
(c)
α,j is the matrix of eigenvectors (v̄

(c)
j )α of the matrix K̂(c) = X̂(c) ·X(c) t

of the size M ×M

K
(c)
α,β(v̄

(c)
j )β = X

(c)
α,kX

(c) t
k,β (v̄

(c)
j )β = λ

(c)
j (v̄

(c)
j )α.

From (14) we have

X
(c)
α,i = V

(c)
α,jU

t
j,i,

This relation allows to obtain the Singular Value Decomposition (SVD) [13] for
the centered data matrix

X
(c)
α,i =

√
MV̄

(c)
α,i Λ

(c) 1/2
i,j U t

j,i. (17)

After dimension reduction the reverse PCA gives the output data matrix

X̃
(c)
α,i:

X̃
(c)
α,i =

√
MV̄

(c)
α,i Λ̃

(c) 1/2
i,j U t

j,i = (18)



=
√
M

([
λ

(c)
1

] 1
2

V̄
(c)
α,1U

t
1,i + ...+

[
λ(c)
m

] 1
2

V̄ (c)
α,mU

t
m,i

)
.

if we retain m the principal components in the optimization problem. The ap-

proximation of matrix X
(c)
α,i is the matrix X̃

(c)
α,i of reduced rank m < n. This

transformation is also known as the discrete Karhunen-Loéve or the Hotelling
transformation [16].

Using the SVD representation (17) and (18) for the centered data matrix we
calculate the mean square error (the standard error)

ηm =
1

nM

M∑
α=1

n∑
i=1

(X
(c)
α,i − X̃

(c)
α,i)

2 =

=
1

nM

M∑
α=1

n∑
i=1

(
√
M

n∑
k=m+1

√
λ

(c)
k V̄

(c)
α,kU

t
k,i

)2

=

=
1

n

n∑
k=m+1

λ
(c)
k .

Thus the minimum error is obtained if the covariance matrix Σ̂ has (n − m)

smallest eigenvalues λ
(c)
j , m + 1 ≤ j ≤ n and the Hotelling transformation can

be considered as the ”eigenvalue control parameter” approximation.
2)Uncentered PCA (uncentered data matrix case). In a similar way, we can

apply the PCA method for the uncentered data matrix X̂(u). Letwj eigenvectors
of the matrix of non-central second moments

T̂ =
1

M
X̂(u) t · X̂(u) (19)

with the eigenvalue λ
(u)
j

T̂ ·wj = λ
(u)
j wj , 1 ≤ j ≤ n,

and satisfy the orthonormality condition

w t
i ·wj = δi,j , 1 ≤ i, j ≤ n,

then
w t
j · T̂ ·wj = λ

(u)
j , (20)

We define matrixWi,j = wj = (wi)j that satisfies the orthogonality condition

Ŵ t · Ŵ = Î .

From (20) we have

Ŵ t · T̂ · Ŵ = Λ̂(u), Λ
(u)
i,j = λ

(u)
i δi,j , (21)



v
(u)
j is j-th uncentered principal component

v
(u)
α,j = X

(u)
α,iWi,j = x(u) t

α ·wj

For the variance of j-th uncentered principal component we obtain

Var(v
(u)
j ) = σ2

w,j =
1

M

M∑
α=1

[
n∑
i=1

(X
(u)
α,i − µi)Wi,j

]2

=

= wj t · T̂ ·wj −
(
µ t ·wj

)2
=

= (µ)2

(
λ

(u)
j

(µ)2
− cos2(µ,wj)

)
,

where

µj =
1

M

M∑
α=1

X
(u)
α,j , 1 ≤ j ≤ n,

Similarly it can obtain [11]

Cov(v
(u)
i ,v

(u)
j ) = −(µ)2 cos(µ,wi) cos(µ,wj),

and the cosine of the angle between the i-th column-centered PC and the j-th
uncentered PC is

cos(v
(c)
i ,v

(u)
j ) =

√√√√ λ
(c)
i

λ
(u)
i

cos(ui,wj). (22)

Hence that for case of uncentered matrix we do not have a simple relation-

ship between the eigenvalues λ
(u)
j and the variance j-th uncentered principal

component (σw,j)
2 as for the centered data matrix. However, this property is

not essential for the usage of the PCA method for the GA and in this case it
is convenient to apply the ”eigenvalue control parameter” approximation. The
idea is to use the PCA method for the SVD representation of the uncentered
data matrix.

Let V
(u)
α,j = v

(u)
j = (v

(u)
j )α. Then

V
(u)
α,j = X

(u)
α,iWi,j , 1 ≤ α ≤M, (23)

and

V
(u) t
i,α V

(u)
α,j = MΛ

(u)
i,j = Mλ

(u)
i δi,j , , (24)

Let us define the matrix V̄α,j

V
(u)
α,j =

√
MV̄

(u)
α,i Λ

(u) 1/2
i,j , (25)



where

Λ
(u) 1/2
i,j =

[
λ

(u)
i

] 1
2

δi,j ,

From (24) and (25) we obtain:

V̄
(u) t
i,α, V̄

(u)
α,j = δi,j .

Again using (25), (23) and (20) we have

V̄
(u) t
i,α X

(u)
α,kX

(u) t
k,β V̄

(u)
β,j = Λ

(u)
i,j = λ

(u)
i δi,j ,

and then V̄
(u)
α,j is the matrix of eigenvectors (v̄

(u)
j )α of the matrix K̂(u) = X̂(u) ·

X(u) t of size M ×M

K
(u)
α,β(v̄

(u)
j )β = X

(u)
α,kX

(u) t
k,β (v̄

(u)
j )β = λ

(u)
j (v̄

(u)
j )α.

From (23) we obtain the representation for the uncentered data matrix

X
(u)
α,i = V

(u)
α,jW

t
j,i, (26)

from which we get the SVD representation for the uncentered data matrix

X
(u)
α,i =

√
MV̄

(u)
α,k Λ

(u) 1/2
k,j W t

j,i. (27)

Then using the ”eigenvalue control parameter” approximation we get for the

output data matrix X̃
(u)
α,j of rang p

X̃
(u)
α,i =

√
MV̄

(u)
α,k Λ̃

(u) 1/2
k,j W t

j,i = (28)

=
√
M

([
λ

(u)
1

] 1
2

V̄
(u)
α,1W

t
1,i + ...+

[
λ(u)
p

] 1
2

V̄ (u)
α,pW

t
p,i

)
,

where the eigenvalue matrix Λ̃
(u)
i,j has rang p (λ

(u)
p+1 = λ

(u)
p+2 = ... = λ

(u)
n = 0).

We approximate X
(u)
α,i with rank n with the matrix X̃

(u)
α,i which has rank p.

This is the analog of the Hotelling transformation.
Using the SVD representation we can estimate the mean square error ηp for

this approximation:

ηp =
1

Mn

M∑
α=1

n∑
i=1

(X
(u)
α,i − X̃

(u)
α,i )

2 =

=
1

Mn

M∑
α=1

n∑
i=1

√M n∑
k=p+1

√
λ

(u)
k V̄

(u)
α,kW

t
k,i

2

=

=
1

n

n∑
k=p+1

λ
(u)
k



Again the minimum error is obtained if the matrix of non-central second mo-

ments T̂ has (n− p) smallest eigenvalues λ
(u)
j , p+ 1 ≤ j ≤ n.

Analysis of eigenvalues in SVD representation of the uncentered input data

matrix X
(u)
α,i used as population in GA can significantly accelerate the processes

of finding the Pareto front for the MOP. We verified this hypothesis for the
standard GA test problems [6].

Eigenvectors with the largest eigenvalues likely determine the subspace of
solutions of the MOP in which lies the Pareto front. Using an iterative procedure
for uncentered data matrix from MOP we can faster converge to the optimal
solution subspace.

PCA-based genetic operator GP (p) = P̂ ◦ Ĉ ◦ Û ◦ F (p)
allows to check the genetic algorithms parameter sensitivity and the possible
correlation between parameters. We introduced a new algorithmic step applied
to generation modification step that performs data transformation based on PCA
and inverse PCA noise reduction operation the set of parameters used for GA.

4 Evolutionary schema performance improvement on an
NSGA-II example

NSGA-II [14] is considered to be one of the most common GAs and it features
fast non-dominance sorting procedure of population and preservation of a good
convergence rate to the optimal Pareto set. The spread of best individuals is
obtained through a diversity preservation operation called crowding distance
and non-dominated ranking procedure.

NSGA-III [15] as a evolution of NSGA-II has more specific algorithm schema
based on reference point’s selection procedure. Suppose that we are using a
decent set of GA suitable for black-box MOP with a computationally-expensive
fitness function (for example constrained or unconstrained NSGA-II or NSGA-
III algorithms). An important issue is the lack of additional operators that could
provide higher convergence to the set of global optimum points. Adding specific
operator that can be regarded as a denoising factor for faster approximation and
convergence to the true Pareto front consisting of ideal individuals, we can apply
orthogonal transformation to be able to discover strong patterns in data set.

5 Results and benchmarking

The DTLZ problems [6] are a set of numerical MOP benchmarks that are
used for comparing and validating results from different GA algorithms. We
present results of the DTLZ benchmarks [6] for NSGA-II and NSGA-II with
PCA noise cleanup operator. We recognized that currently NSGA-III is outper-
forming NSGA-II but here results are provided as a proof of concept. On Figure
1 – Figure 7 are presented the parameter distribution (mean and standard devi-
ation values) and cost function values behavior depending on used algorithms.
Comparing Figure 6 and Figure 7 where was applied noise-removing procedure



Fig. 1. Population distribution on 40th generation - NSGA-II - DTLZ3

Fig. 2. Population distribution on 40th generation - NSGA-II - DTLZ4

and Figure 3 and Figure 4 where was not, we can observe faster convergence to
the ideal values of the parameters in the first case. Figure 7 and Figure 8 show
the first approach to Pareto front in combination with correct set of parameters.
In Figure 9, we represent results of the first simple transport particle simula-
tions, with promising results of benefit already 20 % of run time of simulation
comparing to initial generations.

In next table you can find behavior of system on 40th population (we are
using variance to define how fast we are providing noise cleanup procedure):

Benchmark Old alg. New alg. PF conv.
DTLZ1 0.3032 0.3034 Not converged
DTLZ2 0.1624 0.1344 Converged for both
DTLZ3 0.2942 0.1357 Converged for NSGAIIPCA
DTLZ4 0.2068 0.1357 Converged for NSGAIIPCA
DTLZ5 0.3076 0.2048 Converged for NSGAIIPCA



Fig. 3. Pareto Front on 40th generation of NSGA-II - DTLZ4

Fig. 4. Pareto Front on 40th generation of NSGA-II - DTLZ5

Fig. 5. Population distribution on 40th generation of NSGA-II with preprocessing of
data - DTLZ4

The next steps of our work will be to agree our concept with the existence of
fixed points in dynamical systems, to re-evaluate a possible speedup comparing
to other algorithms together with the ”black-box” benchmarks [17] and port



Fig. 6. Population distribution on 40th generation - NSGA-II with preprocessing of
data - DTLZ4

Fig. 7. Population distribution on 40th generation - NSGA-II with preprocessing of
dataI - DTLZ5

Fig. 8. Pareto Front on 40th generation of NSGA-II with preprocessing of data -
DTLZ5

a new algorithm as a part of the optimization framework for GeantV particle
transport simulations code.



Fig. 9. Parameter benefit after tuning simplified particle transport simulation appli-
cation with NSGA-II and preprocessing of data

6 Conclusion

We have explored the possibility to combine stochastic optimization methods and
unsupervised machine learning to obtain a powerful combination that speedup
existing GA algorithms. The combination of genetic algorithm and principal
component analysis helps to get better convergence rate performing data set
noise cleanup procedure based on orthonormal transformations. Performance
optimization based on of tuning parameters of particle transport simulations
using the approach outlined here will help to free up computational resources,
change the algorithmic approaches used for job scheduling and provide energy-
efficient solution granting the same work proficiency.
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