Методы и алгоритмы классификации и прогнозирования в задачах создания интеллектуального интерфейса пользователя

Выполнил Студент гр.ДА-72 Давыденко К.П.

Руководитель к.т.н., с.н.с. Киселев Г.Д.

Интеллектуальный интерфейс (определение)

ИНТЕЛЛЕКТУАЛЬНЫЙ ИНТЕРФЕЙС (intelligent interface) - интерфейс, обеспечивающий взаимодействие пользователя с ЭВМ на естественном языке. Как правило, включает диалоговый процессор, интерпретирующий профессиональный язык пользователя, и планировщик, преобразующий описание задачи в программу ее решения на основе информации, хранящейся в базе знаний

Интеллектуальный интерфейс (задачи)

- "Интеллектуальные" интерфейсы расширяют взаимодействие между человеком и компьютером с помощью:
 - увеличения диапазона способов ввода и вывода, посредством которых происходит взаимодействие;
 - обогащения грамматики ввода и вывода;
 - кооперации с пользователем в достижении целей задачи.

Что такое классификация?

- Задача классификации формализованная задача, в которой имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется выборкой. Классовая принадлежность остальных объектов не известна.
- Классифицировать объект значит, указать номер (или наименование) класса, к которому относится данный объект.

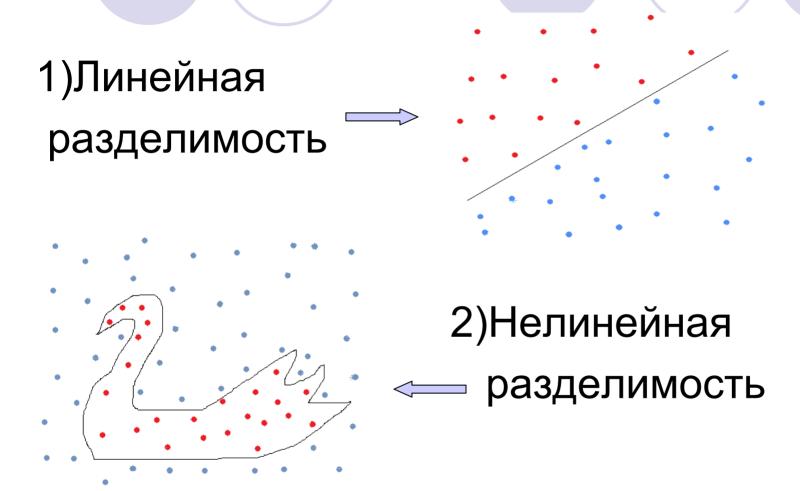
Методы классификации

- Метрические
- Логические
- Статические (бейесовские)
- Методы регрессионного анализа
- Нейросетевые методы
- •Линейные методы

Обучение с учителем

- Линейные методы классификации относятся к методам обучения с учителем, т.е. для того чтобы классифицировать какой-либо объект, необходимо сначала ввести шаблоны классов (обучающее множество).
- Для исследования были выбраны методы SVM (Support Vector Machine, Метод Опорных Векторов) и KDA (Kernel Discriminant Analysis, Ядерный Дискриминантный Анализ).

Виды разделимости данных



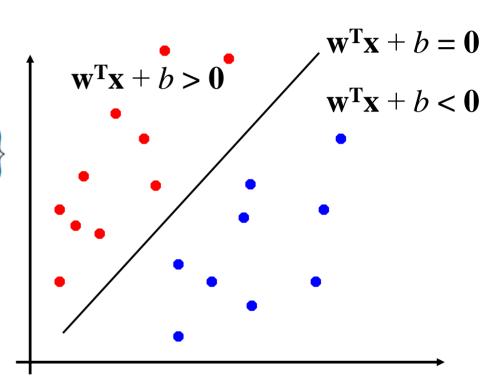
Линейная разделимость (SVM)

Самый простой классификатор в данном случае – гиперплоскость

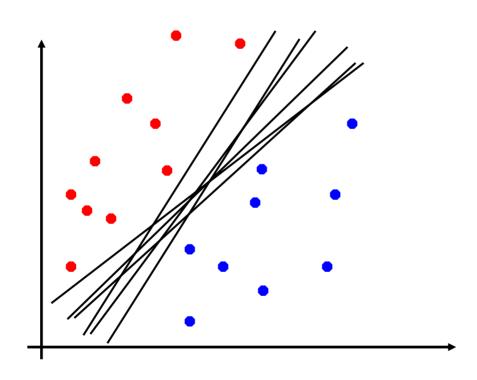
$$S = \{ \mathbf{x} \mid \langle \mathbf{w}, \mathbf{x} \rangle + b = 0 \}$$

- Выбрать **w** и **b** исходя из информации содержащейся в обучающем множестве
- Необходимо предсказать с какой стороны лежит новая точка

$$f_X(x_{HOBBIŬ}) = sign(\langle w, x_{HOBBIŬ} \rangle + b)$$



Какая разделяющая плоскость будет наилучшей?



Линейная разделимость (SVM)

Определение линейно разделимых множеств:

$$\frac{\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1}{\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1} \frac{\partial \mathcal{I} \mathcal{I}}{\partial \mathcal{I} \mathcal{I}} y_i = +1$$
$$\frac{\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1}{\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1} \frac{\partial \mathcal{I} \mathcal{I}}{\partial \mathcal{I} \mathcal{I}} y_i = -1$$

Для поиска оптимальной гиперплоскости необходимо максимизировать :

$$\rho(\mathbf{w}_o, b_o) = \frac{2}{\|\mathbf{w}_o\|}$$

T.e. найти w и b удовлетворяющих

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$$
 для $i = 1, 2, ..., N$

И минимизировать ф-ию

$$\Phi(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

Поиск минимума

Формулируя эту задачу в терминах метода Лагранжа, получаем, что необходимо найти минимум по w, b, и максимум по λ_i функции

$$\frac{1}{2}w\cdot w-\sum_{i}\lambda_{i}(y_{i}(w\cdot x_{i}-b)-1),$$

при условии $\lambda_i \geq 0$.

Необходимым условием метода Лагранжа является равенство нулю производных Лагранжиана по переменным w и b. Взяв производную целевой функции поw, выражаем вектор w через множители Лагранжа:

$$w = \sum_{i} \lambda_{i} y_{i} x_{i} .$$

Теперь уравнение разделяющей гиперплоскости выглядит так:

$$\sum_{i} \lambda_{i} y_{i} x_{i} \cdot x - b = 0,$$

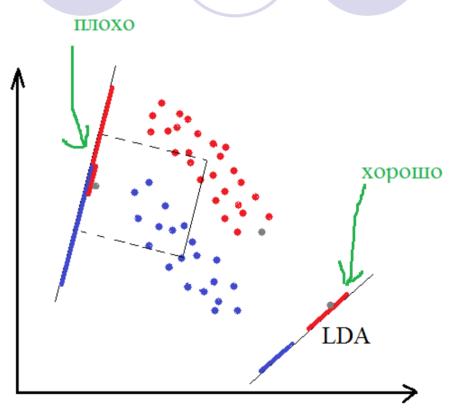
где x_i - это объект, который мы хотим классифицировать.

Линейная разделимость (KDA)

Простейшее решение - провести прямую, соединяющую центроиды классов и проецировать точки на неё - не подходит, так как при этом классы практически полностью перекрываются. Решение состоит в том, чтобы найти ось, проекция на которую максимизирует величину *J(a)* - отношение общей дисперсии выборки к сумме дисперсий

внутри отдельных классов:

$$J(a) = \frac{a^T S_b a}{a^T S_w a}$$



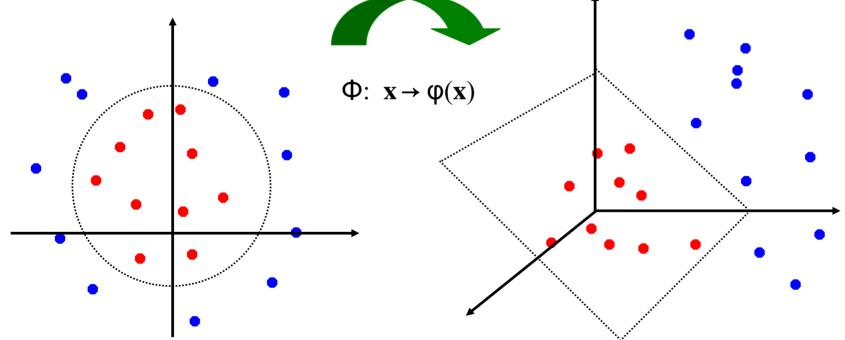
$$S_b = \sum_{k=1}^{c} m_k (\mu^{(k)} - \mu) (\mu^{(k)} - \mu)^T \qquad S_w = \sum_{k=1}^{c} (\sum_{i=1}^{m_k} (x_i^{(k)} - \mu^{(k)}) (x_i^{(k)} - \mu^{(k)})^T)$$

где μ -глобальный центроид, m_k -количество объектов в k-ом классу, $\mu^{(k)}$ -центроид k-го класса, $x_i^{(k)}$ -і-ый объект в k-ом классе

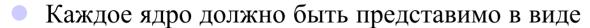
Идея Kernel SVM (нелинейный случай)

 Исходное пространство может быть отображено в пространство более высокой размерности, где множество станет линейно-разделимым.

Подтверждение-теорема Ковера(Cover)



Kernel Trick



$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$$

 Теорема Мерсера: каждая симметричная, положительно полуопределенная функция является ядром, т.е. матрица К должна быть положительно полуопределенной

 Также нам не требуется знать как выглядит на самом деле пространство, где строится гиперплоскость, нужны только значения ядра как меры близости между двумя векторами

Примеры ядерных функций

- lacksquare Линейное ядро: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Полиномиальное: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
- Гауссовское (RBF) ядро:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

• Сигмоидальное:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

Нелинейный случай (SVM)

• Решение:

$$f(x) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, x_{j}) + b$$

- Вычисления в пространствах огромных размерностей становится возможным благодаря использованию ядер
- Методы для определения ai остаются неизменными.

Нелинейный случай (KDA)

Используя линейное отображение ϕ : \square n o F

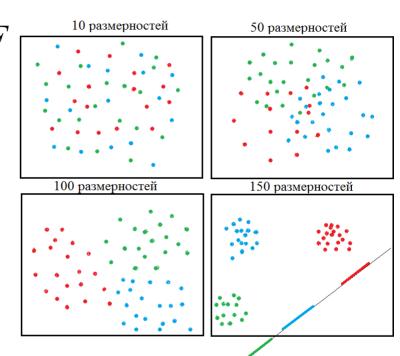
$$S_b^{\phi} = \sum_{k=1}^{c} m_k (\mu_{\phi}^{(k)} - \mu_{\phi}) (\mu_{\phi}^{(k)} - \mu_{\phi})^T$$

$$S_{w}^{\phi} = \sum_{k=1}^{c} \left(\sum_{i=1}^{m_{k}} (\phi(x_{i}^{(k)}) - \mu_{\phi}^{(k)}) (\phi(x_{i}^{(k)}) - \mu_{\phi}^{(k)})^{T} \right)$$

$$J(a) = \frac{a^T S_b^{\phi} a}{a^T S_w^{\phi} a}$$

Что эквивалентно

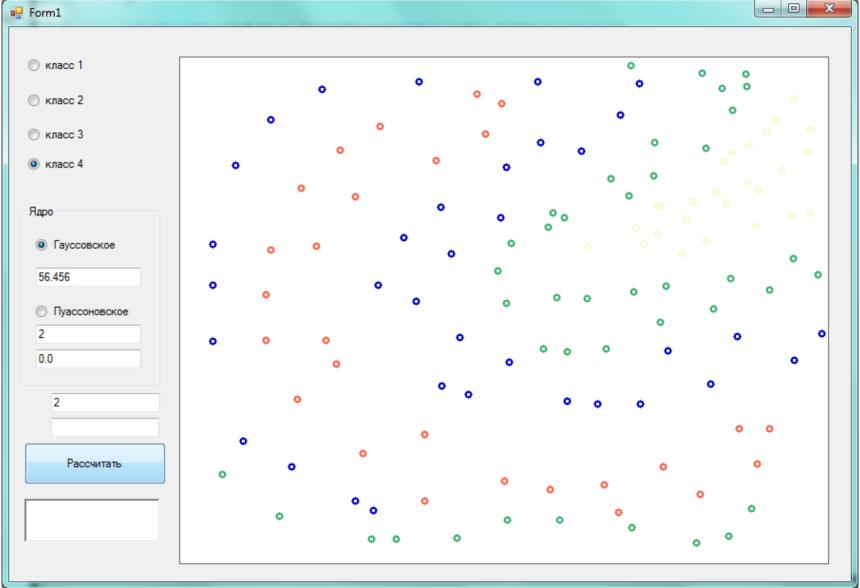
$$J(a) = \frac{a^T KWKa}{a^T KKa}$$



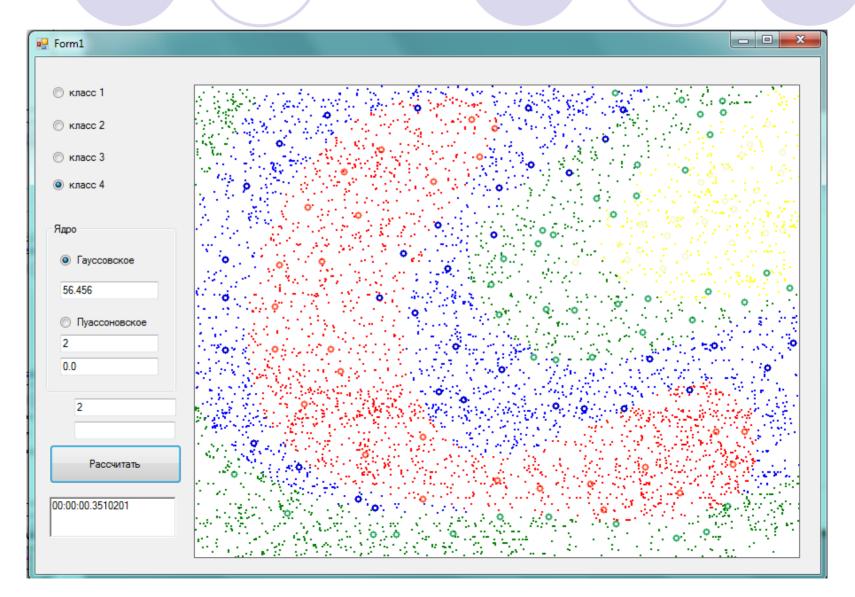
где K-ядерная матрица ($K_{ij} = K(x_i, x_j)$), W-весовая матрица

$$W_{ij} = \begin{cases} 1/m_k & \text{если } x_k \text{ и } x_j \text{ оба принадлежат k-ому классу} \\ 0, & \text{в другом случае} \end{cases}$$

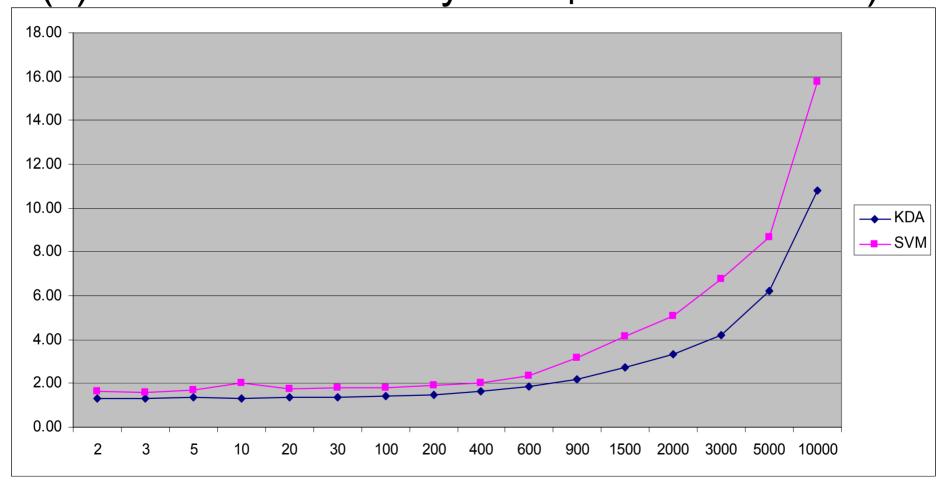
Программа (обучение)



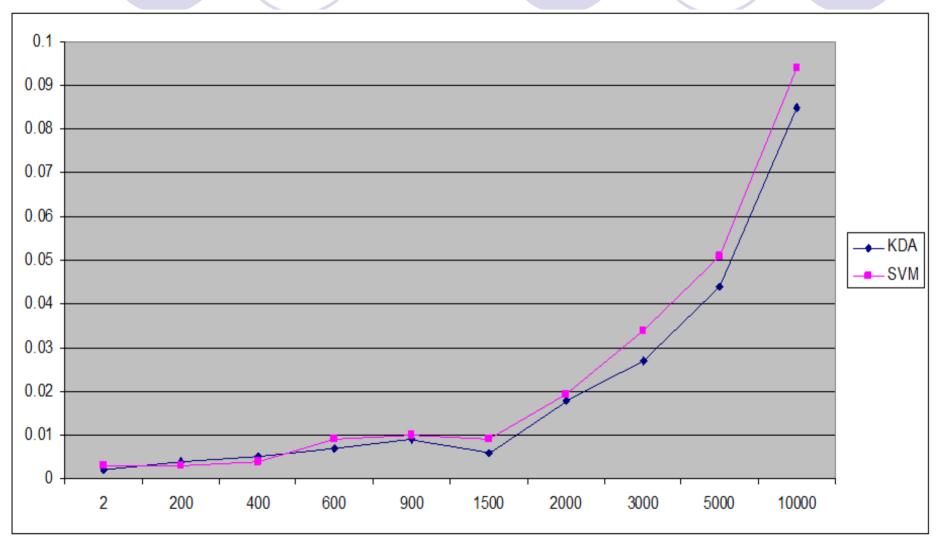
Программа (классификация)



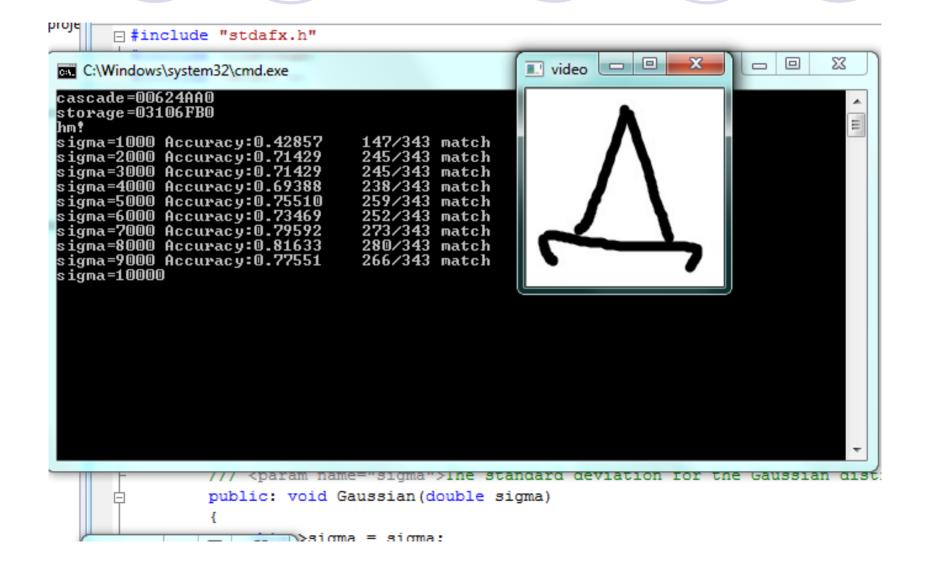
Сравнение SVM и KDA (скорость нахождения гиперплоскости и проекции (с) от количества обучающего множества)



Сравнение SVM и KDA (время классификации (с) от количества обучающего множества)



Классификации рукописных букв

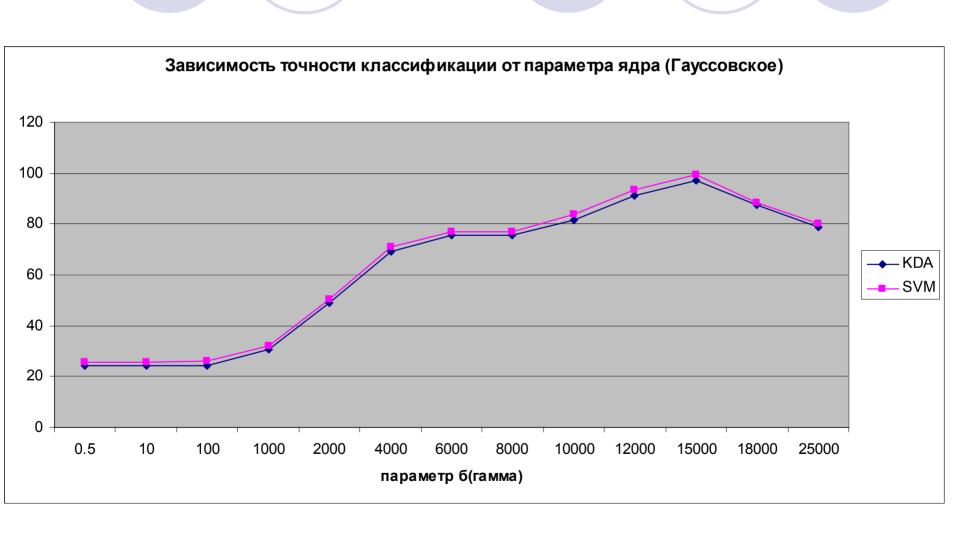


Выбор параметра ядра в задаче классификации рукописных букв

В данной задаче каждый объект обучающего множеста букв имел 25600 признаков, т.е. объект можно представить в пространстве, имеющем 25600 размерностей (картинка 160х160 пикселей). Так же количество объектов множества было большое (более 100).

Были проведено тестирование, в результате которого были получены значения параметров ядра, при которых была получена наибольшая точность классификации.

Выбор параметра ядра



Выводы

- Проведен анализ алгоритмов классификации для применения в задачах построения интеллектуального интерфейса
- Разработаны экспериментальные версии программ, реализующие алгортмы SVA и KDA.
- Проведено тестирование реализованных алгоритмов при различных используемых параметрах.

Спасибо за внимание!